Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature

نویسندگان

  • Viruntachar Kruefu
  • Anurat Wisitsoraat
  • Adisorn Tuantranont
  • Sukon Phanichphant
چکیده

In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 substrate with interdigitated gold electrodes to form thick film sensors. Particle characterizations by X-ray diffraction (XRD), nitrogen adsorption analysis, and high-resolution transmission electron microscopy (HR-TEM) showed highly crystalline ZnO nanoparticles (5 to 15 nm) loaded with ultrafine Au nanoparticles (1 to 2 nm). Film characterizations by XRD, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and atomic force microscopy (AFM) revealed the presence of P3HT/ZnO mixed phases and porous nanoparticle structures in the composite thick film. The gas sensing properties of P3HT:1.00 mol% Au/ZnO NPs composite sensors were studied for reducing and oxidizing gases (NH3, C2H5OH, CO, H2S, NO2, and H2O) at room temperature. It was found that the composite film with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibited the best NH3 sensing performances with high response (approximately 32 to 1,000 ppm of NH3), fast response time (4.2 s), and high selectivity at room temperature. Plausible mechanisms explaining the enhanced NH3 response by composite films were discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization

For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film-ZnO b...

متن کامل

The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature

In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...

متن کامل

Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices

In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scat...

متن کامل

Conducting Graphite/Cellulose Composite Film as a Candidate for Chemical Vapor-Sensing Material

A type of conductive graphite/cellulose composite film used for chemical vapor-sensing material was prepared at room temperature in the ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIm]Cl). Graphite was pretreated with both oxidation and reduction processes. Due to the use of N,N-carbonyldiimidazole (CDI), as a covalent cross-linking agent in [BMIm]Cl, there were limited chemical bonds ...

متن کامل

ZnO/SnO2 Heterojunctions Sensors with UV-Enhanced Gas-Sensing Properties at Room Temperature

We report herein the efficiency of microwave-assisted synthesis for obtaining ZnO/SnO2 heterostructures for room-temperature gas-sensing applications. The sensing performances of the traditional oxide materials have been found for applications above 200 °C. However, these temperatures were here reduced to room temperature by considering sensing activity photoactivated by UV light, even for ppb ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014